
A radiomics nomogram for preoperative prediction of microvascular 
invasion risk in hepatitis B virus-related hepatocellular carcinoma

Jie Peng 
Jing Zhang 
Qifan Zhang 
Yikai Xu 
Jie Zhou 
Li Liu 

Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and ranks 
third as a cause of cancer-related death globally. Worldwide, approximately 630 000 
new cases of HCC occur annually, with more than half of these cases occurring in 

China (1). This disease is related to hepatitis B virus (HBV) infection in almost 70%–90% of 
cases in the highly endemic Asia-Pacific regions, especially in China (2, 3). Partial hepatec-
tomy and liver transplantation are the most effective curative treatments, albeit in a limited 
number of cases (4). Indeed, the 5-year recurrence rates after surgical treatment and liver 
transplantation are as high as 70% and 35%, respectively (5–7). It is, therefore, necessary to 
find effective biomarkers that can identify aggressive behavior and predict tumor recur-
rence after liver resection and transplantation.

In HCC, the presence of microvascular invasion (MVI) is a histopathologic feature indic-
ative of aggressive behavior (8). Previous studies have identified MVI as a major risk factor 
for early recurrence in the first two years after liver resection and transplantation (9). Pre-
cise identification of MVI involvement in patients with HCC is critical to develop treatment 
strategies and arrive at prognoses. Over the past decade, researchers have made persistent 
endeavors towards the preoperative prediction of MVI (10–12). Although several radiologic 
features on contrast-enhanced magnetic resonance imaging (MRI) and computed tomogra-
phy (CT) images (such as tumor margin, internal arteries, and hypodense halos) are known 
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PURPOSE 
We aimed to develop and validate a radiomics nomogram for preoperative prediction of micro-
vascular invasion (MVI) in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC).

METHODS
A total of 304 eligible patients with HCC were randomly divided into training (n=184) and inde-
pendent validation (n=120) cohorts. Portal venous and arterial phase computed tomography 
data of the HCCs were collected to extract radiomic features. Using the least absolute shrinkage 
and selection operator algorithm, the training set was processed to reduce data dimensions, 
feature selection, and construction of a radiomics signature. Then, a prediction model includ-
ing the radiomics signature, radiologic features, and alpha-fetoprotein (AFP) level, as presented 
in a radiomics nomogram, was developed using multivariable logistic regression analysis. The 
radiomics nomogram was analyzed based on its discrimination ability, calibration, and clinical 
usefulness. Internal cohort data were validated using the radiomics nomogram.

RESULTS
The radiomics signature was significantly associated with MVI status (P < 0.001, both cohorts). 
Predictors, including the radiomics signature, nonsmooth tumor margin, hypoattenuating halos, 
internal arteries, and alpha-fetoprotein level were reserved in the individualized prediction no-
mogram. The model exhibited good calibration and discrimination in the training and validation 
cohorts (C-index [95% confidence interval]: 0.846 [0.787–0.905] and 0.844 [0.774–0.915], respec-
tively). Its clinical usefulness was confirmed using a decision curve analysis.

CONCLUSION
The radiomics nomogram, as a noninvasive preoperative prediction method, shows a favorable 
predictive accuracy for MVI status in patients with HBV-related HCC. 
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to be predictors of MVI status, there is still 
debate about the best predictive feature of 
MVI in HCC (13–15). Therefore, establishing 
these radiologic features require further 
validation studies. Moreover, there remains 
a lack of a satisfactory prediction method in 
HBV-related HCC, and a new method for im-
proving the predictive power of MVI should 
also be considered (16).

In this regard, radiomics—a quantitative 
high-throughput extraction method used 
for converting medical images into high-di-
mensional extractable data—has attracted 
increasing attention in recent years (17, 
18). Data analysis subsequent to radiomics 
can aid the decision-making process. Previ-
ous reports have indicated that radiomics 
features could potentially be used as pre-
dictive or prognostic biomarkers (19–21). 
Although a radiomics signature based on 
CT textural features has been reported as a 
biomarker for the preoperative prediction 
of early recurrence in patients with HCC 
(22), to the best of our knowledge, no study 
to date has proposed that presence of MVI 
can be accurately predicted based on a ra-
diomics signature.

Therefore, our study aimed to construct 
and validate a novel radiomics model, in-
cluding a radiomics signature, radiologic 
features, and clinical risk factors, to predict 
preoperative MVI status in patients with 
HBV-related HCC.

Methods 
Patient selection

This retrospective study was approved 
by our institutional review board and ethi-
cal committee (NFEC-201208-K3). Informed 
consent forms were signed by all patients. 
A total of 918 cases of HCC were identified 
from electronic medical records. The in-
clusion criteria were as follows: (a) partial 
hepatectomy with tumor tissues patholog-
ically confirmed to be HCC; (b) validation 
of clinical data; (c) validation of triphasic 

dynamic CT images acquired within 7 days 
prior to treatment; and (d) the presence of 
a single tumor. Exclusion criteria were as 
follows: (a) history of locoregional therapy 
(radiofrequency ablation) or liver transplan-
tation; (b) presence of other malignant liver 
tumors; and (c) presence of two or more 
tumors. Based on these criteria, 304 pa-
tients were finally selected for this study. 
They were randomly assigned to the train-
ing (n=184) or validation (n=120) cohorts. 
The presence of MVI was confirmed by two 
pathologists. All patients were enrolled be-
tween January 2006 and November 2015.

Baseline clinicopathologic data (age, sex, 
hepatocirrhosis status, Child–Pugh classifi-
cation, and alpha-fetoprotein [AFP] level) 
were gathered from medical records. Serum 
AFP levels were measured within a week 
before surgery. In accordance with the nor-
mal range used at our center, the threshold 
value of serum AFP level was 20 ng/mL.

CT image acquisition
Contrast-enhanced CT images were 

acquired at our hospital using either a 
SOMATOM (Siemens Medical Systems) 
and Brilliance iCT 256 (Philips Healthcare) 
multi-detector row CT (MDCT) scanner. 
Scanning parameters used in this study 
were as follows: tube voltage, 120 kVp; de-
tector collimation, 64×0.6 and 128×0.625 
mm; field of view, 250–400 mm; pixel size, 
512×512; rotation time, 0.5 s; slice interval, 
0 mm; slice thickness, 5 mm; and recon-
structed section thicknesses, 1 mm. Con-
trast-enhanced CT images were acquired 
after the injection of 1.0 mL/kg contrast 
material (Ultravist 370, Bayer Schering 
Pharma) into the antecubital vein at a rate 
of 2.0–3.0 mL/s using a power injector (Ul-
rich CT Plus 150, Ulrich Medical), followed 
by a saline flush (20 mL). Triphasic (hepatic 
arterial, portal venous, and delayed phase) 
CT images were acquired at 30, 60, and 120 
s after contrast material injection. The slice 
thickness of the reconstructed arterial and 
portal venous phase images was 5 mm.

Analysis of radiologic features
Preoperative CT images were retrospec-

tively assessed using a Picture Archiving 
and Communication System with an op-
timal window setting in each case. Image 
analysis was performed by two abdominal 
radiologists (readers 1 and 2, with 11 and 
20 years of experience in liver CT imaging, 
respectively) who were blinded to informa-
tion on clinical, laboratory, pathologic, and 

MVI status. Each image was validated by a 
senior radiologist. Imaging features were 
determined for each HCC, in accordance 
with previous studies (13, 15).

The imaging features were as follows: 
(a) tumor margin, categorized as a smooth 
margin when observed to enclose nodular 
tumors with smooth contours or as a non-
smooth margin when observed to enclose 
non-nodular tumors with an irregular 
margin with budding portions at the pe-
riphery in both hepatic arterial and portal 
venous images; (b) peritumoral enhance-
ment, which was defined by the presence 
of a detectable region of enhancement ad-
jacent to the tumor border in the arterial 
phase, which later exhibited attenuation 
compared with the background liver pa-
renchyma on CT images in the equilibrium 
phase; (c) a hypoattenuating halo, which 
was defined as a rim of hypoattenuation 
partially or completely circumscribing the 
tumor on peritumoral portal venous imag-
es; (d) internal arteries, which were defined 
by the persistence of discrete arterial en-
hancement within the tumor in the arteri-
al phase; and (e) a tumor–liver difference, 
which was defined as a focal or circumfer-
ential sharp transition of attenuation be-
tween the tumor and adjacent liver paren-
chyma in arterial phase images.

Segmentation of regions of interest and 
extraction of radiomic features

Regions of interest (ROIs) in tumors were 
semi-automatically segmented in the larg-
est cross-sectional area using the IBEX soft-
ware package (open source, source-code 
version), which was developed in 64-bit 
MATLAB 2014b (Math Works). Tumor ROIs 
were manually segmented by an abdomi-
nal radiologist with 11 years of experience; 
a senior radiologist with 20 years of experi-
ence confirmed each ROI.

In this study, 980 candidate radiomics 
features were generated from each pa-
tient, 490 features each from arterial and 
portal venous phase images. Each image 
was prepared by using a Gaussian smooth 
filter (size=3, sigma=0.5) to decrease 
noise. All feature extraction methods 
employed IBEX software using in-house 
developed texture analysis algorithms. 
The 980 extracted features included the 
following key features: intensity direct, 
intensity histogram, gray-level run-length 
matrix (GLRLM), gray-level co-occurrence 
matrix (GLCM), neighbor intensity differ-
ence, and shape. 

Main points

• We present a radiomics nomogram for pre-
dicting presurgical microvascular invasion in 
HBV-related hepatocellular carcinoma.

• The nomogram exhibits favorable calibration 
and discrimination for prediction of microvas-
cular invasion. 

• It is useful for noninvasively identifying pa-
tients with hepatocellular carcinoma with a 
high microvascular invasion risk.



Selection of MVI-status-related features 
and construction of a radiomics signature

A logistical model was built using the 
least absolute shrinkage and selection op-
erator (LASSO) algorithm. The λ with the 
smallest cross-validation error was chosen. 
Finally, eight features were selected, and a 
formula for the radiomics score (rad-score) 
was generated using a linear combina-
tion of the chosen features weighted by 
the LASSO method. A radiomics signature 
was developed using the rad-scores. The 
Mann-Whitney U test was used to evaluate 
potential relationships between the radio-
mics signature and MVI status in the train-
ing and validation cohorts.

Construction and validation of the 
radiomics nomogram

The radiomics signature, nonsmooth tu-
mor margin, internal arteries, hypoattenu-
ating halos, and AFP level were tested in a 
multivariate logistic regression model for 
prediction of MVI in the training cohort. In 
this way, a radiomics nomogram was con-
structed and used as a quantitative tool 
for predicting MVI status in the training 
cohort.

The internal validation cohort was eval-
uated using the radiomics nomogram, 
and the total points for each patient were 
calculated and then evaluated as a predic-
tive factor for MVI. Finally, the C-index and 
calibration curve were generated from the 
regression model. Using Harrell’s C-index, 
the discrimination capability of the radiom-
ics model in the training cohort was quan-
titated. Bootstrapping validation (1000 
bootstrap resamples) was performed to cal-
culate a relatively corrected C-index in the 
validation cohort.

Clinical utility
For evaluating the clinical utility of the 

nomogram, the probabilities of net benefits 
were quantified at different thresholds in 
the combined training and validation co-
horts by decision curve analysis (DCA).

Statistical analysis
The LASSO logistic regression model was 

applied with penalty parameter tuning, 
which was achieved by 10-fold cross-valida-
tion. A likelihood ratio test with backward 
step-down selection was applied to the 
multivariate logistic regression model. All 
statistical tests were performed using the R 
statistical software version 3.3.3. The “glm-
net” package was used for executing the 

LASSO algorithm. Receiver operating char-
acteristic (ROC) curves were plotted using 
the “pROC” package. The nomogram and 
calibration plots were constructed using the 
“rms” package, while DCA was performed 
using the “dca.R” package. Chi-square test 
and Mann-Whitney U test were analyzed 
by R statistical software. Two-sided P values 
<0.05 were considered significant.

Results
The patient recruitment process and 

study flowchart are presented in Supple-
mental Figs. S1 and S2, respectively. The de-
velopment process of the radiomics model 
is presented in Fig. 1. The baseline clinical 
characteristics of the training and validation 
cohorts are listed in Table 1. There was no 
significant difference in prevalence of MVI 
between the two cohorts (P = 0.185); the 
MVI positivity rates were 69% and 61.7% in 
the training and validation cohorts, respec-
tively. There were no significant differences 
in other clinical characteristics between the 
two cohorts (Table S1). 

This study employed axial CT images 
for analysis of radiologic features (Supple-
mental Fig. S3). A significant difference was 
observed in the prevalence of nonsmooth 
tumor margins between MVI-positive and 

MVI-negative patients in the training co-
hort (P = 0.015); this difference was later 
confirmed in the validation cohort as well 
(P = 0.008; Table 1). We found arterial peri- 
tumoral enhancement had no significant 
difference in training and validation cohorts 
(P = 0.301 and P = 0.556, respectively; Table 
1). Hypoattenuating halos and internal ar-
teries showed significant differences be-
tween MVI-positive and MVI-negative pa-
tients in both cohorts (Table 1). Tumor–liver 
difference was observed and there was no 
significant difference between MVI-positive 
and MVI-negative patients in either cohort  
(P = 0.994 and P = 0.888, respectively).

A total of 980 features were extracted 
from CT images (490 each from hepatic ar-
terial and portal venous phase images; Fig. 
2a). Eight features (five and three features, 
respectively, from hepatic arterial and por-
tal venous phase images) that were signifi-
cantly related to MVI status in the training 
cohort were chosen for construction of the 
radiomics signature (Fig. 2b). In both co-
horts, MVI-positive patients exhibited high-
er rad-scores than MVI-negative patients  
(P < 0.001, both). 

The results of multivariate logistic re-
gression analysis demonstrated that the 
radiomics signature, AFP level, internal ar-
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Figure 1. Flowchart of the model development process in this study.
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teries, and nonsmooth tumor margin were 
independent predictors of MVI (Table 2). 
Notably, hypoattenuating halo was also an 
important predictor of MVI (Tables 1 and 
2). Therefore, a radiomics nomogram was 
constructed with radiomics signature, AFP 
level, hypoattenuating halos, arterial per-

itumoral enhancement, and nonsmooth 
tumor margin status as predictors of MVI 
(Fig. 3). In the training cohort, this model 
showed a favorable C-index of 0.846 (95% 
confidence interval [CI], 0.787–0.905) and 
good calibration upon bootstrapping vali-
dation (Table 2).

The radiomics nomogram presented a 
similar C-index (0.844; 95% CI, 0.774– 0.915) 
in the validation set. The calibration curves 
demonstrated good consistency between 
the nomogram-estimated and actual fre-
quencies of MVI (Fig. 4). On the basis of the 
maximum Youden index, the optimal cutoff 

Table 1. Characteristics of patients in the training and validation cohorts

Training cohort Validation cohort

Characteristic MVI present MVI absent P MVI present MVI absent P

Age (yrs), median (range) 53 (21–77) 52 (15–79) 0.291 55 (24–73) 47 (19–73) 0.025*

Sex 0.657 0.084

   Male 108 (58.7) 47 (25.5) 61 (50.8) 43 (35.8)

   Female 19 (10.3) 10 (5.4) 13 (10.8) 3 (2.5)

HBsAg status 0.189 0.572

   Positive 96 (52.2) 48 (26.1) 61 (50.8) 36 (30.0)

   Negative 31 (16.9) 9 (4.9) 13 (10.8) 10 (8.3)

Child-Pugh classification 0.765 0.166

   A 107 (58.1) 49 (26.6) 63 (52.5) 43 (35.8)

   B 20 (10.9) 8 (4.3) 11 (9.2) 3 (2.5)

AFP (ng/mL) <0.001* < 0.001*

   ≤20 30 (16.3) 31 (16.9) 17 (14.2) 25 (20.8)

   >20 97 (52.7) 26 (14.1) 57 (47.5) 21 (17.5)

Hepatocirrhosis status 0.004* 0.894

   Present 65 (35.3) 42 (22.8) 49 (40.8) 31 (25.8)

   Absent 62 (33.7) 15 (8.1) 25 (20.8) 15 (12.5)

Tumor size (cm), median (range) 6.30 (1.00–20.00) 5.70 (1.8–19.5) 0.498 6.35 (0.80–15.20) 4.90 (0.30–17.20) 0.453

Nonsmooth tumor margin 0.015* 0.008*

   Present 82 (44.6) 26 (14.1) 53 (44.2) 22 (18.3)

   Absent 45 (24.5) 31 (16.9) 21 (17.5) 24 (20.0)

Arterial peritumoral enhancement 0.301 0.556

   Present 17 (9.2) 11 (6) 14 (11.7) 7 (5.8)

   Absent 110 (59.8) 46 (25.0) 64 (53.3) 43 (35.8)

Hypoattenuating halos 0.014* 0.008*

   Present 29 (15.8) 23 (12.5) 13 (10.8) 18 (15.0)

   Absent 98 (53.3) 34 (18.5) 61 (50.8) 28 (23.3)

Internal arteries 0.001* < 0.001*

   Present 79 (42.9) 21 (11.4) 46 (38.3) 13 (10.8)

   Absent 48 (26.1) 36 (19.6) 28 (23.3) 33 (27.5)

Tumor–liver difference 0.994 0.888

   Present 20 (10.9) 9 (4.9) 7 (5.8) 4 (3.3)

   Absent 107 (58.1) 48 (26.1) 67 (55.8) 42 (35.0)

Radiomics score, median (range) 1.676 
(-2.076 to 5.626)

-0.012 
(-4.453 to 3.114)

< 0.001* 1.127 
(-1.450 to 5.331)

-0.041 
(-4.099 to 2.537)

< 0.001*

Data are presented as n (%) unless otherwise noted. P values are derived from univariable association analysis between each of the clinicopathologic variables and MVI 
status.
HBsAg, Hepatitis B surface antigen; AFP, alpha-fetoprotein; MVI, microvascular invasion. 
*P < 0.05 indicates statistical significance.



value of all nomogram scores in the training 

set was defined to be 60. The sensitivity and 

specificity of the radiomics nomogram were 

79.53% (95%CI, 71.46–86.17%) and 71.93% 

(95%CI, 58.46–83.03%) in the training co-

hort and 75.68% (95%CI, 64.31–84.90) and 

80.43% (95%CI, 66.09–90.64%) in the vali-

dation cohort, respectively (Table S2).

According to the results of DCA of the 
radiomics nomogram (Fig. 5), when the 
threshold probability is ~10% or 30%, the 
radiomics nomogram and radiomics sig-
natures will provide a greater benefit than 
the “treat-all” or “treat-none” strategies. The 
threshold probability is ~46%–88% in ra-
diologic features that integrate AFP levels 
and the radiomics signature showed a bet-
ter ability to discriminate the MVI compared 
with radiologic features. By combining the 
radiomics signature and radiologic fea-
tures, this radiomics nomogram exhibited 
a greater overall net benefit than the ra-
diomics signature and radiologic features, 
including AFP levels. Moreover, the area 
under the ROC curve of the radiomics no-
mogram was significantly higher than the 
radiomics signature or radiologic features 
that included AFP levels (P = 0.023 and  
P = 0.008, respectively).

Discussion
In the present study, which involved pa-

tients with HCC (approximately 80% related 
to HBV infection), we developed a nomo-
gram that included CT-based radiomics 
features, radiologic features, and clinical 
data as a new method for individualized 
prediction of MVI before therapy in HBV-re-
lated HCC. To our knowledge, this is the first 
study to employ radiomics for evaluation of 
MVI in HCC. We confirmed capability of the 
radiomics model for preoperative individu-
alized prediction of MVI status in a valida-
tion cohort. 

Recent studies have demonstrated that 
radiomics signatures could be used to de-
termine the risk of lymph-node metastasis 
in patients with colorectal and bladder can-
cer (23, 24). Radiomics signatures have been 
reported to be important pretreatment 
prognostic predictors for progression-free 
and overall survival in patients with can-
cer (25–28). Similarly, in the present study, 
a radiomics signature involving multiple 
radiomics features was demonstrated to 
be significantly associated with MVI status. 
We developed a nomogram that integrated 
radiomics signature with radiologic fea-
tures and AFP level to further improve its 
predictive accuracy for MVI. The radiomics 
nomogram exhibited a good C-index val-
ue in the training and validation cohorts. 
Therefore, with the added advantage of 
noninvasiveness, this CT-image-derived ra-
diomics model can be used as a convenient 
biomarker for prediction of MVI status.
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Table 2. Risk factors for microvascular invasion in hepatocellular carcinoma

Model

Intercept and variables β Odds ratio (95% CI) P

Intercept -1.372 0.006*

Radiomics signature 0.771 5.252 (2.811–9.813) <0.001*

Nonsmooth tumor margin 1.127 3.088 (1.383–6.895) 0.005*

Internal arteries 1.104 3.017 (1.382–6.584) 0.005*

Hypoattenuating halos -0.722 0.485 (0.210–1.117) 0.089

AFP level 0.857 2.358 (1.038–5.358) 0.04*

C-index

Training cohort 0.846 (0.787–0.905)

Validation cohort 0.844 (0.774–0.915)

β, regression coefficient; AFP, alpha-fetoprotein.
*P < 0.05 indicates statistical significance.

Figure 3. Construction of the radiomics nomogram. In the training set, the radiomics nomogram 
incorporated radiomics signature, nonsmooth tumor margin, internal arteries, hypoattenuating 
halos, and AFP levels.

Figure 2. a, b. Selection of radiomics features using the LASSO logistic regression model. Panel 
(a) shows LASSO coefficient analysis of the 980 radiomics features. Using 10-fold cross-validation, 
the minimum value of log (λ) was found to be -2.855 based on the 1-SE criteria. Panel (b) shows 
coefficients plotted against the log (λ) sequence. Eight nonzero coefficients (indicated by a vertical 
line in the plot) were selected.

a b
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In the present study, presence of non- 
smooth tumor margins, hypoattenuating 
halos, and internal arteries was significantly 
associated with MVI status in the training 
and validation cohorts, which is in agree-
ment with the results of previous studies 
(29–32). A previous study reported radioge-
nomic venous invasion (RVI), which includ-
ed internal arteries, hypodense halo, and 
tumor–liver difference, as a contrast-en-
hanced CT biomarker for prediction of MVI 

(13). Another study reported “two-trait pre-
dictor of venous invasion” (TTPVI), which 
included internal arteries and hypodense 
halo, to exhibit a high predictive accuracy 
(15). However, these previous studies were 
limited by the irrelatively small sample sizes 
and lack of internal or external validation. In 
the present study, in addition to the radio-
mics nomogram, we also validated RVI and 
TTPVI and discovered that our radiomics 
nomogram exhibited a higher accuracy for 

prediction of MVI in the combined train-
ing and validation cohorts (Supplemental 
Fig. S4). This indicates that our nomogram 
could be more suitable than the previous 
two biomarkers for prediction of MVI in 
HBV-related HCC.

In previous studies, multifocal lesions, 
large tumor size, advanced neoplasm grade, 
and high serum AFP level have been re-
ported to increase the possibility of vas-
cular invasion in advanced HCC (33–35). In 
the present study, abnormal AFP level, an 
independent risk factor for MVI, was also 
significantly associated with MVI. However, 
tumor size and neoplasm grade were not as-
sociated with MVI status in either cohort in 
our study; this finding is in agreement with 
that of Chandarana et al. (36) and inconsis-
tent with that of Renzulli et al. (15). There are 
conflicting data regarding the efficiency of 
tumor size in predicting MVI in HCC. These 
discrepancies are probably because of se-
lection bias; in the present study, nearly 66% 
of patients with HCC exhibited MVI positivi-
ty, with a mean tumor size of 6.7 cm.

The most important and final goal of 
a nomogram is the imperative to explain 
individual requirements for additional 
treatment (37). We determined the sensi-
tivity and specificity of our nomogram for 
predicting the risk of MVI, using 60 as the 
cutoff value. Patients with scores ≥60 had 
a greater risk of MVI relative to the rest. We 
also evaluated the radiomics nomogram of 
all patients by DCA and calculated the net 
benefit by summing up the benefits and 
subtracting the ill effects, weighting the 
latter by a factor associated with the rela-
tive harm of undetected cancer to that of 
unnecessary treatment (38). This new ap-
proach provides insights into the clinical 
consequences of threshold probabilities as 
well as information regarding the net bene-
fit. The decision curve indicated that, when 
the threshold probability was 10%, use of 
the radiomics model for prediction of MVI 
provided a greater benefit than the over-
all-treatment or no-treatment strategies. 
Thus, our nomogram can serve as a non-
invasive preoperative predictive tool for 
assessment of MVI status in patients with 
HBV-related HCC.

This study has some limitations. It should 
be mentioned that our study lacked exter-
nal validation for the model and requires 
further multicenter validation with a larg-
er sample size to obtain more convincing 
evidence in favor of clinical application of 
the radiomics nomogram. Additionally, ap-

Figure 4. a, b. Calibration curves of radiomics nomogram-based prediction in the training and 
validation cohorts. To validate the predictive ability of the nomogram, calibration curves in the 
training (a) and validation (b) groups were analyzed. The calibration curves represent the calibration 
of the nomogram based on agreement between the predicted risk of MVI and actual MVI findings. A 
closer fit between the red and blue lines indicates better predictive accuracy of the nomogram.

a b

O
bs

er
ve

d 
fr

eq
ue

nc
y 

of
 M

VI

O
bs

er
ve

d 
fr

eq
ue

nc
y 

of
 M

VI

Nomogram-predicted probability Nomogram-predicted probability

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.20.2 0.40.4 0.60.6 0.80.8 1.01.0

Figure 5. Findings of DCA for the entire cohort (n=304). The decision curve indicates that when the 
threshold probability of a patient was ~10%, use of the radiomics nomogram for predicting MVI would 
provide greater benefit than the “treat-all” patients or “treat-none” schemes. The curve of the radiomics 
nomogram over the radiomics signature and radiologic features that integrated AFP levels showed the 
greatest benefit. 

Threshold probability

N
et

 b
en

ef
it

0.0 0.2 0.4 0.6 0.8 1.0

None
All
Radomics signature
Radiologic feature integrating AFP level
Radomics nomogram0.6

0.4

0.2

0.0



plication of a combination of gene markers 
(a 91-gene “venous-invasion marker panel” 
derived from gene-expression analysis of 
HCC tumors with histologically confirmed 
MVI) and the radiomics signature might 
improve the efficiency of MVI prediction in 
patients with HCC (39).

In conclusion, we developed a noninvasive 
radiomics nomogram (including a radiomics 
signature, radiologic features, and clinical risk 
factors) that exhibited favorable accuracy for 
preoperative individualized prediction of MVI 
status in HBV-related HCC. Multicenter retro-
spective validation and prospective random-
ized clinical trials are needed to obtain stron-
ger evidence in favor of clinical application of 
our radiomics nomogram.
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Table S1. Participant characteristics in the training and validation cohorts

Characteristics
Training cohort 

(n=184)
Validation cohort 

(n=120) P 

Age, years, median (range) 53 (15–79) 49 (19–73) 0.170

Sex

   Male 155 104 0.560

   Female 29 16

HBsAg status 0.588

   Positive 144 97

   Negative 40 23

Child–Pugh classification 0.380

   A 156 106

   B 28 14

AFP (ng/mL) 0.739

   ≤20 61 42

   >20 123 78

Hepatocirrhosis status 0.135

   Present 107 80

   Absent 77 40

Tumor size (cm), median (range) 6.0 (1.0–20.0) 5.45 (0.3–17.2) 0.061

Nonsmooth tumor margin 0.507 

   Present 108 75

   Absent 76 45

Arterial peritumoral enhancement 0.596

   Present 28 21

   Absent 156 99

Hypoattenuating halos 0.382

   Present 52 31

   Absent 132 99

Internal arteries 0.376

   Present 100 59

   Absent 84 61

Tumor–liver difference 0.096

   Present 29 11

   Absent 155 109

Radiomics score, median (range) 1.14 (-4.45 to 5.63) 0.756 (-4.10 to 5.33) 0.055

Data are presented as n  unless otherwise noted. P values are derived from univariable association analysis between 
each of the clinicopathologic variables and MVI status. AFP, alpha-fetoprotein; HBsAg, Hepatitis B surface antigen; MVI, 
microvascular invasion.*P < 0.05 means statistical significance.

Figure S1. Recruitment pathways for patients 
with HCC. CT, computed tomography; HCC, 
hepatocellular carcinoma; MVI, microvascular 
invasion.

Radiomics score (Rad-score) calculation 
formula

Rad-score = 2.529

+1.899* P_IntensityDirect_
LocalEntropyMean

-9.534*P_GLRLM_90Short
RunEmphasis

-4.004e-06 *P_GLRLM_0
LongRunHighGrayLevelEmpha

+2.598*A_Shape_Roundness

-3.740e-06 *A_GLRLM_0
LongRunHighGrayLevelEmpha

-1.715*A_GLCM_0.4InverseVari-
ance

-1.218*A_GLCM_135.4Contrast 

-5.196*A_GLCM_0.1Contrast
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Table S2. Accuracy of the prediction score of the nomogram for estimating the risk of microvascu-
lar invasion 

Variable

Value (95% confidence interval)

Training cohort Validation cohort

Area under the ROC curve, 
concordance index

0.846 (0.787–0.905) 0.844 (0.774–0.915)

Cutoff score 60 60

Sensitivity, % 79.53 (71.46–86.17) 75.68 (64.31–84.90)

Specificity, % 71.93 (58.46–83.03)  80.43 (66.09–90.64)

Likelihood ratio 2.83 3.86

ROC, receiver operating characteristic.

Figure S2. Study flowchart.
LASSO, least absolute shrinkage and selection operator.



Figure S3. a–e. Axial CT images demonstrating 
radiologic features of tumors: (a) nonsmooth 
tumor margin (arrow), (b) hypoattenuating halo 
(arrow), (c) peritumoral enhancement (arrow), 
(d) internal arteries (arrow), (e) tumor–liver 
difference (arrow). 
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Figure S4. Performance of radiogenomic venous invasion (RVI), two-trait predictor of venous invasion 
(TTPVI), and the radiomics nomogram in the combined training and validation cohorts (n=304). 
The results of the bootstrap (n=2000) test for three ROC curves indicated that the AUC of the sum of 
radiomics nomograms was significantly higher than those of the sole presence of RVI and TTPVI  
(P < 0.001, both). The difference in AUC between TTPVI and RVI was also significant (P = 0.027). 
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